首页> 外文OA文献 >Gammatone Wavelet Cepstral Coefficients for Robust Speech Recognition
【2h】

Gammatone Wavelet Cepstral Coefficients for Robust Speech Recognition

机译:用于鲁棒语音识别的Gammatone小波倒频谱系数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop noise robust features using Gammatone wavelets derived from the popular Gammatone functions. These wavelets incorporate the characteristics of human peripheral auditory systems, in particular the spatially-varying frequency response of the basilar membrane. We refer to the new features as Gammatone Wavelet Cepstral Coefficients (GWCC). The procedure involved in extracting GWCC from a speech signal is similar to that of the conventional Mel-Frequency Cepstral Coefficients (MFCC) technique, with the difference being in the type of filterbank used. We replace the conventional mel filterbank in MFCC with a Gammatone wavelet filterbank, which we construct using Gammatone wavelets. We also explore the effect of Gammatone filterbank based features (Gammatone Cepstral Coefficients (GCC)) for robust speech recognition. On AURORA 2 database, a comparison of GWCCs and GCCs with MFCCs shows that Gammatone based features yield a better recognition performance at low SNRs.
机译:我们使用从流行的Gammatone函数派生的Gammatone小波开发抗噪功能。这些小波合并了人类外周听觉系统的特征,特别是基底膜的空间变化频率响应。我们称这些新功能为Gammatone小波倒谱系数(GWCC)。从语音信号中提取GWCC涉及的过程与常规的Mel频率倒谱系数(MFCC)技术相似,不同之处在于所使用的滤波器组的类型。我们用Gammatone小波滤波器组替换了MFCC中的常规mel滤波器组,该滤波器组是使用Gammatone小波构造的。我们还探索了基于Gammatone滤波器组的功能(Gammatone倒谱系数(GCC))对鲁棒语音识别的影响。在AURORA 2数据库上,GWCC和GCC与MFCC的比较表明,基于Gammatone的功能在低SNR时具有更好的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号